
Comparison of Implicit Collocation Methods

the Heat Equation

Jules Kouatchou*

NASA Goddard Space Flight Center
Code 931

Greenbelt, MD 20771

Fabienne J@z@que] t

Universit@ de Paris 6

Laboratoire d'Informatique

F-75015 Paris

for

Abstract

We combine a high-order compact finite difference scheme to approximate spatial
derivatives and collocation techniques for the time component to numerically solve the two
dimensional heat equation. We use two approaches to implement the collocation methods.
The first one is based on an explicit computation of the coefficients of polynomials and the

second one relies on differential quadrature. We compare them by studying their merits
and analyzing their numerical performance. All our computations, based on parallel
algorithms, are carried out on the CRAY SV1.

Key words: Collocation methods, differential quadrature, high-order compact scheme, iterative

methods, parallel algorithm.

1 Introduction

In [11] Kouatchou presented an implicit technique to numerically solve the two-dimensional

heat equation. The method, called the implicit collocation method (ICM), consists of first

discretizing in space (using a fourth order compact scheme) the equation. The solution is

approximated at each spatial grid point by a polynomial depending on time. The resulting

derivation produces a linear system of equations. The order of the method is in space the

order of the difference approximation andin time the degree of the polynomial [5, 8, 9, 10].

ICM when implemented on parallel computers, allows the parMlelization across both time

and space, i.e., at each iteration of the parallel algorithm, we can obtain the solution in the

entire spatial domain at several consecutives time levels. Kouatchou proposed two parallel

algorithms to compare ICM and the Crank-Nicolson method (known to be implicit) in [12].

His numerical experiments carried out on the SGI Origin 2000, showed that under some rea-

sonable assumptions, ICM can be more cost effective than the Crank-Nicolson method. It

was also observed in [13, 14] that higher-order algorithms in time (as ICM) can be made com-

petitive with conventional time-marching algorithms, particularly if high accuracy is needed.

*E-mail: kouatchou(_gsfc.nasa.gov. This author is also affiliated with Morgan State University and his
research was supported by NASA under the grant No. NAGS-3508.

)E-maih Fabienne.,lezequel@lip6.fr.

In [10,11,12],the authorsuseduniform time stepsto derivethe systemof equations.
In addition, regularpolynomialswereemployedfor the time discretization.It is an inter-
estingproblemto not only rely on non-uniformtime stepsbut alsoto includeorthogonal
polynomials.

In this paper,wereformulatethe implicit collocationmethodfor the two dimensional
heatequation. We presenttwo methodsto approximatethe time components.The first
method(ICM-EP),describedabove,is basedon anexplicit determinationof polynomialof
degreer that approximates at each spatial grid point the time components at r consecutive

time levels [11, 12]. The second method (ICM-DQ) uses instead differential quadratures

to find the solution at r prescribed time levels. The underlying approach in the second

method still (indirectly) relies on polynomials of degree r that may be more "stable". In our

new formulation we employ known results to show that the proposed methods have unique

solutions, are implicit, are stable, and produce high accurate solutions. We perform basic

comparisons of the two methods and discuss their merits. In our numerical experiments, we

present the accuracy of the approximated solution and the parallel efficiency of each approach.

An outline of the paper is as follows. Section 2 presents the techniques used to discretize
the equation in space and the concept of collocation for the time variable. Section 3 discusses

the implementation strategies. Numerical experiments appear in Section 4. We formulate
some conclusions in Section 5.

2 Derivation of the System of Equations

We consider the two dimensional heat equation:

Ou { 02u 02u)o__i(x,y,t) = _2 __5._Z_2(_,y,t) + _g._y2(_,y,t) , (x,y,t) Eft x [0, oo) (1)

where ft = (0, 1) x (0, 1), and with the initial condition

u(x, y, 0) = ¢(x, y), (x, y) _ n,

and with the assumption that u(x, y, t) is known for any (x, y) in the boundary 5_ and for
t > 0. We also assume that u(x, y, t) is a smooth function on _.

The above equation models the flow of heat in the unit square domain that is insulated

except on the boundary, cr2 is the thermal diffusivity.

2.1 Spatial Discretization

Let h = 1/n be the uniform spatial mesh-width. We can subdivide the spatial domain as
follows:

xi =ih, yj = jh, i,j=O, 1,...,n.

For simplicity, we write the approximated solution of u and its time derivative at the spatial
grid points (xi, yj) as:

u_,j(t) = _,(:r_,_jj,t), _d u[,j(t) = -5-i°_(_'_'yJ, t).

At any given time t, if we use the discretization of the steady state Poisson equation

with a fourth-order scheme [7], we can approximate the spatial derivatives of (1). We obtain

for any interior grid point (xi, yj):

1 r UI+ [V;÷lj(t) + +,j+,(t) + e'_lj(t) + V'j_t(t) + se'j(t)]

= + u,,j+l(t) + E_,,j(t) + (2)
+ + (t) + - 20u+j(t)]:

Eq. 2 is a system of 5 = (n - l) 2 ordinary differential equations and for any value of t, it is

fourth-order in space. The system can be rewritten in a matrix-vector form as:

...... Mu'c t) = WUC+t)-+ cCt), Ca)

Ot 2

where M = ½tri[ln-t, Mr, [n-1]n-t, W = "_tm[Wl-t,Wl, W/at]n-1 and c(t) is a 5 vector
containing the values of u and its time partial derivative at the boundary grid points at time

t. Ml = trill, 8, 1in-t, Wl-t = tri[1, 4, 1in-t, Wt = [4, -20, 4in-i, and Wt+t = tri[1, 4, 1in-1

are matrices all of order n - 1. The initial condition U(0) is given by the function ¢(x, y).

Here fn-1 is the identity matrix of order n- 1 and tri[al_t, at, at+t]n-t denotes the tridiagonal

matrix whose I th row contains the values al-t, al and al+t on its subdiagonal, diagonal and

superdiagonal respectively. The subdiagonal of the first row and the superdiagonal of the

last row are not defined. The subscript n - 1 determines the number of rows (or block-rows

if the al are block-matrices).

Because M and W are cons.rant .nonsingulax. matrices and that the initial and boundary

conditions are properly known, we can derive the following result:

Lemma 1 The system (3) has a unique solution U(t).

The solution U(t) is not only continuous in time but is also smooth (because of previous

assumptions), i.e., at least the first few derivatives with respect to time exit and are continuous

too. We can now introduce the principle of the collocation method to evaluate the time
derivative.

2.2 Collocation Methods

Without lost of generality, we suppose that we are interested in finding the solution for the

values of t in the interval I0, 71, where T is any positive number. Consider r arbitrary mesh

points given by:

0 $

0 = tO < tl < "" < tr-2 < tr-t = T. (4)

The r-stage collocation method is completely defined as a function of the above time mesh

points by assuming that the approximated solution is reduced to polynomials of degree at

most r. We then require that the approximated solution satisfies the initial and boundary

conditions, and that it satisfies the differential equation (3) at the collocation points tk,

k = 0,. • -, r - 1. We propose two approaches.

Method 1: Explicit Polynomials (ICM-EP)

At any spatial grid point (zi,yi), we assume that the approximated solution at tk (k =

0,..., r - 1) can be written as a polynomial of degree r:

Ui,j(tk) ._ Pi,j(tk) ----ai,j,rtrk + ai,j,r-ltrk -1 +"" + ai,.i,]tk + ai,j,o.

The polynomial expressions are substituted in (2) leading to a linear system of equations

with r_ unknowns, ai,j,1,... ,ai,j,r, for i,j = 1,... ,n -- 1. We note that the ai,j,o are known

and are equal to u(xi,yj, O) = _b(xi, yj). After some algebraic manipulations we obtain the

linear system of r_ equations [1 l, 12]:

AX = S, (5)

where A is a block-tridiagonal matrix given by

A = tri [At-l, At, Al+l]__l •

Al-1, At and At+t are square matrices of order r(n - 1) defined as

At-1 = tri

At = tri

At+_ = tri

lh 2 ,]-E,-_-_E -4E,-E ,
rt_t

71h2E'- ah_: +20E'2a2]n-]7_- _ 4E, 4 E' lh2E'-4E ,

[-E, lh2E'-4E,-E]n_I2 a2 •

E and E' are nonsymmetric dense matrices of order r. The vector X represents the r_

unknowns aid,l, ai,j,2,..., aid,r, and S is the right-hand-side containing values of the solution

and its time derivative on the boundary of the domain.

The bandwidth of the matrix A is equal to (2n + 1)r and it has r2(3n - 5) 2 nonzero

entries. After the ai,j,k are determined, it is easy to compute the solution at any point t in

the interval [to, tr-l]. More detailed information on this approach can be seen in [11, 12].

Method 2: Differential Quadrature (ICM-DQ)

In the differential quadrature method, the value of the time derivative of the solution at

each collocation point is expressed as weighted linear sums of the function values at all the

sampling points, i.e.,
0

r-1

u'(tk) = oky(t), k = 0,..., r - 1. (6)
l=O

In particular, for any spatial grid point (xi, yj),

r--]

l=O

The weighting coefficients wk,t (k,l = 0,...,r - l) can be determined such that Eq. 6 is

satisfied exactly for r linearly independent test polynomials (such as Lagrange, Legendre,

Chebyshev,Lobatto polynomials).TheWk,t are obtained solving a linear system of equations

[15, 17].
With the knowledge of the weights, we can substitute equation (6) into the system (3)

to obtain for a typical interior grid point at time level tk:

r-1 r--1

E +u:,j+t+ +v','j_l)- E
/=1 /=1

-t-2p(Uk+I,j+I + gk-l,j+l + uik-l,j-_l -_ uik+l, _ I)

where p = a2/h 2, and

8p- Wk,k, if k = l_k,t = --wk,t, if k _ l '
= _" 40p + 8Wk,k,

L 8wk,l,

ifk=l

ifk#l

Eq. 7 leads to the following linear system of equations

BY = R,

where B is a block-tridiagonal matrix given by

B = tri [Bt-I, BI, Bl+l]n-1.

Bl-1, Bl and Bl+l are square matrices of order (r - 1)(n - l) defined as

Bl_l = tri[G,F,G],__l,

Bl = tri[F,D,F]n_l,

Bt+_ = tri[G, F, G],_-l.

(7)

The above collocation schemes are equivalent to certain Runge-Kutta methods [2, 4,

18, 19I. The two cases are A-stable methods Ill, 161 and their accuracies are related to their

growth functions [1, 5, 8, 9]. For ICM-EP, the accuracy in time is r regardless of the choice

of the tk. In ICM-DQ, we deal with polynomials of degree r. The accuracy of the derivatives

in the differential quadrature is r. Then the overall accuracy of the method is r independent

of the selection of the tk and the test polynomials.

Here D, F and G are square matrices of order r - 1 which entries are given by Dk,l = --_k,i,

Fk,t = Vk,t and Gk,t = 2pSk,t (where 5k,t = 1 if k = l and 0 otherwise). Y is the unknown vector

representing the (r-1)h values U .k. (1 < i,j < n-1 and 1 < k < r-l) at the collocation point.

The matrix has 2n(r- 1) as bandwidth and (r - 1)((5r - 1) (n - 3) 2 + (16r - S) (n - 3) + 12r - 8)

nonzero entries.

It is important to note that matrices A and B in (5) and (8) respectively, have the

same block structure but B has a smaller order and fewer nonzero entries. Though both

methods will give approximated solutions at the same collocation points, ICM-DQ requires

less computations because Eq. 8 has fewer unknowns compared to Eq. 5.

Remark 1 [CM-EP requires the explicit knowledge of the time derivative at the boundary

grid points. It is not the case for ICM-DQ where we can use the quadrature weights to evaluate

the time derivative at any grid point even on the boundary.

(s)

6

Lemma 2 In the implicit collocation method for the heat equation described here, if the

approximated solution is obtained at r consecutive time levels, the resulting method is fourth
order in space and (at least) of order r in time.

One of the advantages of ICM-EP is that we do not obtain the approximated solution at the

levels tk, k = 0,..., r -- 1 only but also at any time t in the interval [to, tr-1]. This is possible

because of the explicit computation of the coefficients of the polYnomials. For ICM-DQ,

the solution is directly obtained at the collocation points tk only. However, we can generate

Lagrange polynomials with tk as node points to find the solution at any points in [to, tr-_]
too.

A question that may arise is whether r can be arbitrary large in order to obtain high

accurate solution. For ICM-EP, J_z_quel numerically showed the existence of an optimal

degree r beyond which the accuracy of the approximated solution will not improve because of

round-offerror propagation [10]. This optimal r depends on the number a spatial grid points

n. The method of differential quadrature, if the collocation points are properly chosen, offers

more "stable" polynomials. Because of the stability of its polynomials, ICM-DQ may require
larger optimal degree r.

Remark 2 There are other collocation approaches to discretize Eq. 1. We can mention the

spectral method where spatial derivatives are discretized using differential quadratures and the

time derivative by finite differences [6]. Here, the computation of spatial derivatives is global

in the sense that all the nodes (in a given direction) are applied in the calculation.- Compared

to [CM, we may gain in accuracy but at the expense of memory requirement (dense matrix

and large bandwidth), an increase of computational cost, and an additional computational

complexity (due to the unstructure shape of the matrix). In addition, this method may intro-

duce a stability requirement associated with the time step whereas for [CM there is no such
requirement.

3 !mplementat!on ...

In this section, we want to describe how ICM with explicit polynomials (ICM-EP) and ICM

with differential quadrature (ICM-DQ) are implemented. In fact, the implementation stategy

for both methods is based on one algorithm presented in [12].

Given the number n for spatial grid points, an arbitrary time step At and the parameter

r, we want to determine the approximated solution in the time interval [0, T]. We carry out

r/consecutive iterations of ICM with the assumption that T = rl(r - 1)At.
Let us focus on the first iteration of ICM algorithm i.e. the solution is to be found in

the interval [0, (r - 1)At]- The results at the end of [0, (r - 1)At] is used as initial conditions

for the next time interval and the length of the interval for each subsequent iteration is still

(r - 1)At. Both end points of the interval are in the set of the collocation points. For

ICM-EP, the r collocation points can be arbitrarily chosen in [0, (r - 1)At]. The spatial and

time discretizations give rise to a linear system of equations, Eq. 5, which solution is the

coefficients of the polynomials. The approximated solution is then evaluated at any point in
the interval [0, (r - 1)At].

In ICM-DQ, the collocation points are either taken arbitrary or are the r zeros (mapped

into the interval [0, (r - 1)At]) of a known polynomial of degree r. After the weights wk,t

are determined, we also solve a linear system of equations, Eq. 8, which directly gives the

approximated solution at the collocation points.

For the computation of the weighting coefficients Wk,l, we assume that the test polyno-

mials (of degree at most r - 1) under consideration, are defined in the interval [-1, 1] and

therefore the r zeros belong to the same interval. We first calculate the weights by focusing

on the interval [-1, 1] and the corresponding weights Wkj in [0, (r-- 1)At] are just the product

of the previous ones by a unique constant that is function of the the smallest and largest zeros

in [-1, 1] and the two end points in [0, (r- 1)At]. These weights are obtained by solving r

linear system of equations with r unknowns each. All the systems have the same underlying

matrix and the only change is the right-hand-side.

Remark 3 There are more explicit formulas to determine the weighting coeLficients [6]. They

depend on the choice of the polynomials. For the sake of using a unique algorithm to find the

weights for all the cases presented here, we use linear systems of equations. To avoid any ill

conditioned problems related to those systems, we only consider small values of r (less than

10). Our numerical experiments suggest that the use of larger values of r do not improve the

overall accuracy of [CM.

The implementations of ICM-EP and ICM-DQ are presented in Algorithm 1 and Algo-

rithm 2 respectively.

Algorithm 1
1. Define the matrix A

2. Decompose the matrix A to obtain the matrix A _ A -1

3. For l = 1 -+ r/, do:

4. Define the right hand side S

5. Determine the coefficients ai,j,k: AAX = .4S

6. Find Ui,j(tk) at (r- 1) collocation points by computing Pi,j(tk)
7. End do

Algorithm 2

1. Compute the weights wk,l
2. Define the matrix B

3. Decompose the matrix B to obtain the matrix/_ _ B -1

4. For l = 1 --+ _, do:

5. , Define the right hand side R °

6. Find Ui,j(tk) at (r- 1) collocation points: f_BY = [_R
7. End do

In ICM-EP, the order of the matrix is r6 whereas for ICM-DQ it is (r- 1)ft. The systems

are solved by first preconditioning the matrices and then using the general minimal residual

technique as the iterative accelerator [20]. There is no major difference between Algorithm l

and Algorithm 2. Algorithm 2 differs from Algorithm 1 in two basic points: 1- It ends when

the solution of the linear system is found (Step 6) and, 2- In its initialization phase we need

to evaluate the weights Wkj (Step l) which computational cost is negligible with respect to

the one of the entire algorithm.

Asn increases, most of the time in the two algorithms is devoted to finding the solution

of the linear systems. Since ICM-DQ has fewer unknowns and non-zero entries in its matrix-

equation, it uses less memory and will require less CPU time.

4 Numerical Experiments

In this section, we compare ICM-EP and ICM-DQ when they are both implemented on a

shared memory vector computer, namely the CRAY SV1 (24 processors each running at 300

Mhz and 8 GB memory). The programs were coded in Fortran 90 programming language in

double precision with 64-bit arithmetic. The parallel implementation of the two algorithms

was achieved by introducing OpenMP directives in the code.

For all our simulations, we consider Eq. 1 with the exact solution given by

7r

u(z, y, t) = cos + v) + e-2, sin - v).

and a = 1/7r. Initial conditions and boundary conditions at any given time are taken from
the above exact solution.

In all our numerical experiments, we assume that the target T where we want to get the

approximated solution is equal to 10.0. The two algorithms are iterated until T is reached.

We focus on the accuracy of the two methods and the computing time they require.

We first determine the elapsed times obtained with the two methods. It is important

to note that for a given set the parameters (n and r), the computational cost of ICM-DQ

remains the same regardless of the choice of the collocation points and the test polynomials.

We consider r = 4, n = 16, and At = 10-2 and record in Table 1 the computing times (in

seconds) as function of the number of processors (#CPUs). We note that in both cases,

as the number of processors increases (from 1 to 8), the computing time decreases. For a

given number of processors, ICM-DQ requires the smallest time. This result was predicted

in the previous section. In addition, ICM-DQ displays a slightly better speedup. It is worth

mentioning that the Cray SV1 is not a dedicated computer, i.e., the requested processors are

not reserved to a particular user during his run. The elapsed time measures the interval of

time between the beginning of the run and its end. It includes any possible idle time.

#CPUs ICM-EP ICM-DQ

236.8

102.2

69.84

56.51

145.9

62.41

41.48

33.61

Table l: Elapsed time (in seconds) as function of the number of processors when n = 16 and
r_4.

Now we want to test the accuracy of ICM-EP and ICM-DQ. We initially compute the

maximum error (at T = 10.0) obtained with both methods when At = 10-2, r = 4 and n

varies. For ICM-DQ, we use as test functions regular polynomials (the set {1,t,... tr-_}),

the Lobatto, Legendreand Chebyshevpolyuomials.The resultsarepresentedin Table21
We5b_ervetliat in M1the:c_es; tl% maximumeri,ors-decreasoby a factor of 16when-n is
d-oubled:-Thu_ICM-_ol_ir_ris"_e-rtio]a_r_t-e-fo0_th-_rdereohv_t_ence in s-pac0, and an of tlie

methods offer comparable accuracies.
....................................

ICM-EP ICM-DQ

n R'egular Lobatto Legendre

4 4.13(-08) 4.17(-08) 4.18(-08) 4.07(-08)

8 2.74(-09) 2.61(-09) 2.62(-09) 2.55(-09)

16. 1..62(-10) ! 1.54.(-10) .1.58(-10) 1..53(-10)
'" 32'_ _:06(:i2)'T i.24i-1_)....4.92(-i2) 5:gi(:i2]

Chebyshev

4.11(-08)
2.58(-09)

1.s4(-10)
4.59(-12)

Table 2: Maximum error obtained with ICM-EP and ICM-DQ when At = 10-2, r = 4 and

n varies.

We now study how the algorithms behave when n and r are fixed and At varies. It is

important to mention that At does not necessarily measure the time step of each method.

The actual time step Ata for a given method is obtained by Ata = rnax(tk+l -- tk) where

the tk belong to the time interval under consideration, say [0, (r - 1)At]. For ICM-EP and

ICM-DQ with regular test polynomials, we took Ate = At. For the remaining cases, Ata is

larger than At and ICM-DQ with Lobatto polynomials has the largest value. "

ICM-EP ICM-DQ

I At ,T]Regular L,egen .d,re Che.byshev.
16 "x 10-z

8 x 10 -2

4 x 10 -2

2 x 10 -2

1 x 10 -2

5 x 10 -3

'7.75(-10)
1.74(-10)
_.63(-10)
1.61(-10)
1.62(-10)
1.61(-10)

1.37(-08)
5.39(-09)
4.86(-10)
9.05(-11)
1.54(-10)
1.60(-10)

Lobatto

6'.zi4(:09)

3.75(-09)
_..61(-10)
1.21(-10)
1.58(-10)
1.61(-10)

9.39(-09)

2.22(-09)

3.74(-10)

1.06(-10)

1.53(-10)

1.60(-10)

8.13(-09)

1.93(-09)

3.34(-10)

1.11(-10)

1.54(-10)

1.61(-10)

Table 3: For n = 16 and

ICM-DQ.

r = 4, maximum error as fimction of At obtained with ICM-EP and

0

In Table 3, we record the maximum error as function of At when n = 16 and r = 4.

As At decreases, the errors seem to level off to unique asymptotic value. ICM-DQ requires

smaller At to reach that asymptotic value. When At is crude, ICM-DQ (as ICM-EP) needs

few iterations to get to the target time T = 10.0 but needs more to adjust. We observe that

if we allow the iterations to go well beyond T = 10.0, ICM-EP and ICM-DQ will give similar

accuracies independent of At and r.

For the problem studied in this paper, the use of non-uniform time grids (such as zeros

of Lobatto, Legendre, Chebyshev) does neither deteriorate nor enhance the accuracy of the

quadrature solutions compared to the use of equally spaced sampling grid points. In other

10

t,ypesoi_proi_iems;t_heut,iiizaiJonoi5non-uniibrmgridshasresuiteciin be{,ger accuracies i3j:

5 Conclusions

We compared two implicit methods to numerically solve the two dimensional heat equation.

The two methods differ by the way that the time derivative is computed. One uses an explicit

computation of coefficients of polynomials to approximate the time component and the other

relies on differential quadratures. In the two cases, the spatial derivatives are discretized

using a fourth-order finite difference scheme. Our numerical results obtained on the Cray

SV1 showed that both methods produce high accurate solutions and that the one based on

differential quadrature requires less memory and the smallest elapsed time.

Acknowledgment: The authors are grateful to the NASA Center for Computational Sci-

ence, located at NASA Goddard Space Flight Center, for providing the computational re-

source to perform this work.

References

[1] U. Ascher and R. Weiss, Collocation for singular pertubation problems I: first order

systems with constant coefficients, SIAM J. Numer. Anal., 10(3), p. 537-557 (1983).

[2] O. Axelsson, A class of A-stable methods, BIT, 9, p. 185-199 (1969).

[3] C.W. Bert and M. Malik, Differential quadrature method in computational mechanics:

a review, Apllied Mechanics Reviews, 49(1), p. 1-28 (1996).

[4] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp., 18, p. 50-64 (1964).

[5] J. Douglas Jr. and T. Dupont, Collocation Methods for Parabolic Equations in a Single

Space Variable, Lecture Notes in Mathematics, Vol. 385, Springer, Berlin, 1974.

[6] D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in

Physics, m8, Springer-Verlag, Berlin, 1992.

[7] M.M. Gupta, A fourth-order Poisson solver, Y. Comp. Phys., 55, p. 166-172 (1984).

[8] E.,Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations I: Non-

stiff Problems, Springer Series in Computational Mathematics, Vol. 8, Springer, Berlin,
1987.

[9] B.L. Hulme, One-step piecewise polynomial Galerkin methods for initial values problems,

Math. Comp., 26, p. 415-426 (1972).

[10] F. J6z6quel, A validated parallel across time and space solution of the heat transfer

equation, Applied Numerical Mathematics, 31, p. 65-79 (1999).

J. Kouatchou, Finite differences and collocation methods for the solution of the two

dimensional heat equation, Num. Meth. for PDEs, 17, p. 54-63 (2001).
[11]

11

[13] M. Malik and F.: Civan, Com.parative study of differential quadrature and cubature

method vis-a-vis some conventional techniques in the context of convection-diffusion-

..... raacti_n. .problems,. Chemical. Engineering.Science,. 50(3.),. p,- 5 al-54 7-.(1.995-)

[14] D.A-. Peters and A.P. Izadpan@, hp-version finite element for space-time domain, Com-

putational Mechanics, 3, p. 73-88 (1988).

[15] J.R_-Quan and_C.T___Chang,-Nevc-insights in-.solving distributed system equationsby the

quadrature method I. Analysis, Computers and Chemical Engineering, 13, p. 779-788

(1_S9): :. -::.......... ::: ::........... _-:-:--".........:-. ".--..::-::' -.................

[16] E. B. Saff and R. S. Varga, On the zeros and poles of Padd approximants to ez, Numer.

Math., 25, p. 1-14 (1975).

[17] C: Shffand B:E.lZiche/_ds_Aplbli_ti0ri 5f gei66r_/lize_tditYer6ht_M q_lgdrath_e to solve two-

dimensional incompressible Navier Stokes equations, Int. d. for Num. Meth. in Fluids,

18(7), p. 791-798 (1992).

[18] R. Weiss, The application of implicit Runge-Kutta and collocation methods to boundary-

value problems, Math. Comp., 28, p. 449-464 (1974).

[19] K. Wright, Some relationships between implicit Runge-Kutta, collocation and Lanczos

r methods, and their stability properties, BIT, 10, p. 217-227 (1970).

[20] J. Zhang, A sparse approximate inverse preconditioner for parallel preconditioning of

general sparse matrices, Applied Mathematics and Computation, to appear.

0

O
II

